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Abstract

In this mini-course, the development of the spatially homogeneous theory to the Boltz-

mann equation will be briefly introduced, especially for the well-posedness result of the

Cauchy problem in the space of probability measure defined via the Fourier transform. Be-

sides the original solution with finite energy, the infinite energy case is not a priori excluded

from the consideration either, where the Bobylev identity and Fourier-based probability

metric will be discussed as two powerful tools.

Rough Arrangement:

So far, a rough arrangement of the four lectures is provided as following, where some adjust-

ments might happen according to the actual progress:

(I) In the lecture1 (3:30 pm - 5:30 pm, Oct. 4), the Fourier transformation in the kinetic

equation and its induced probability metric will firstly introduced, including their basic calculus

rules and contractive property, which then leads to the uniqueness of the solution to homogeneous

Boltzmann equation with finite energy.

(II) In the lecture2 (3:30 pm - 5:30 pm, Oct. 11) - lecture3 (3:30 pm - 5:30 pm, Oct. 18), the

well-posedness result of the homogeneous Boltzmann equation will be derived in the measure

valued sense from cutoff to non-cutoff kernel, where the infinite energy solutions are also not

a priori excluded from the consideration; moreover, the asymptotic behaviour towards the self-

similar profile will also partially discussed.

(III) In the lecture4 (3:30 pm - 5:30 pm, Oct. 25), the contents mentioned above shall firstly

be finished off, then, compared with the Maxwellian molecule, the similar methodology will be

illustrated how to solve the general hard/soft potential case in the probability measure space; if

time permits, some further applications to other kinetic-related model, e.g., dissipative inelastic

Boltzmann equation, will be discussed as well.

Corresponding and Relevant Materials

The following materials are, in chronological order, referred to the development of the study

about the solution to spatially homogeneous Boltzmann equation as a probability measure, where

the Fourier Transformation plays a critical role.
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KQ: This list is not intended to be completely covered in the mini-course, which is definitely

impossible, but to partly reflect the history and hopefully present a big picture about how the

research of the homogeneous Boltzmann equation in probability measure sense developed: from

cutoff to non-cutoff, from the Maxwellian molecule to hard/soft potential, from higher-order mo-

ments requirement to lower-order... The selection is biased in favor of personal taste.
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Preliminary Knowledges:

KQ: The following elementary introductions about the Boltzmann equation, especially the

collision operator, are priorly assumed to be familiar with our audience, which would be no

longer over-repeated during the mini-course.

0.1 The Spatially Homogeneous Boltzmann equation.

In the spatially homogeneous theory of the Boltzmann equation, one is interested in the

solution f(t, x, v) which does not depend on the x space variable. This view of point is pretty

common in physics, especially when it comes to the problems focusing on the collision operator,

as the collision integral operator only acts on the velocity dependence. On the other hand, the

interests towards the spatially homogeneous study also arise from the numerical analysis, since

almost all numerical schemes succeed from the splitting of the transport step and collision step.

In this case, the homogeneous Boltzmann equation in R3 reads:

∂tf(t, v) = Q(f, f)(t, v), (0.1)

with the non-negative initial condition,

f(0, v) = F0(v), (0.2)

where the unknown f = f(t, v) is regarded as the density function of a probability distribution,

or more generally, a probability measure; and the initial datum F0 is also assumed to be a

non-negative probability measure on R3.

The right hand side of (0.1) is the so-called Boltzmann collision operator,

Q(f, f)(v) =

∫
R3

∫
S2
Bσ(v − v∗, σ) [f(v

′)f(v′∗)− f(v)f(v∗)] dσ dv∗

=

∫
R3

∫
S2
Bω(v − v∗, σ) [f(v

′)f(v′∗)− f(v)f(v∗)] dω dv∗,

(0.3)
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where (v′, v′∗) and (v, v∗) represent the velocity pairs before and after a collision, which satisfy

the conservation of momentum and energy:

v′ + v′∗ = v + v∗, |v′|2 + |v′∗|2 = |v|2 + |v∗|2, (0.4)

so that (v′, v′∗) can be expressed in terms of (v, v∗) as

v′ =
v + v∗

2
+

|v − v∗|
2

σ, v′∗ =
v + v∗

2
− |v − v∗|

2
σ,

or v′ = v − v[(v − v∗ · ω)]ω, v′∗ = v + v[(v − v∗ · ω)]ω,
(0.5)

where both of σ and ω are a vector varying over the unit sphere S2. And this also easily implies

Figure 1: Velocity and unit vector during a classical elastic collision.

the relations

v · v∗ = v′ · v′∗, |v − v∗| = |v′ − v′∗|, (v − v∗) · ω = −(v′ − v′∗) · ω. (0.6)

0.2 The Boltzmann collision kernel.

The collision kernel B is a non-negative function that depends only on |v− v∗| and cosine of

the deviation angle θ, whose specific form can be determined from the intermolecular potential

using classical scattering theory. For example, in the case of inverse power law potentials U(r) =

r−(s−1), 2 < s < ∞, where r is the distance between two interacting particles, B can be separated

as the kinetic part and angular part:

B(v − v∗, σ) = B(|v − v∗|, cos θ) = b(cos θ)Φ(|v − v∗|), cos θ =
σ · (v − v∗)

|v − v∗|
, (0.7)

where kinetic collision part Φ(|v − v∗|) = |v − v∗|γ , γ = s−5
s−1 , includes hard potential (γ > 0),

Maxwellian molecule (γ = 0) and soft potential (γ < 0). The kernel (0.7) encompasses a wide

range of potentials, among which we mention two extreme cases [7]:

(i) s = ∞, γ = 1, ν = 0 corresponds to the hard spheres, where B is only proportional to

|v − v∗|,
B(|v − v∗|, cos θ) = K|v − v∗|, K > 0; (0.8)
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(ii) s = 2, γ = −3, ν = 2 corresponds to the Coulomb interaction, where B is given by the

famous Rutherford formula,

B(|v − v∗|, cos θ) =
1

|v − v∗|3 sin4(θ/2)
. (0.9)

Besides, another theoretical collision kernel that could lead to many explicit calculations is

the well-known Maxwellian molecules B(|v − v∗|, σ) = b
(

v−v∗
|v−v∗| · σ

)
= b(cos θ), which implies

that B does not depend on |v − v∗|. The range of deviation angle θ, namely the angle between

pre- and post-collisional velocities, is a full interval [0, π], but it is customary to restrict it to

[0, π/2] mathematically, replacing b(cos θ) by its “symmetrized” version [16]:

[b(cos θ) + b(cos (π − θ))]10≤θ≤π
2
, (0.10)

which amounts more or less to forbidding the exchange of particles.

0.3 Cutoff VS Non-cutoff

As it has been long known, the main difficulty in establishing the well-posedness result for

Boltzmann equation is that the singularity of the collision kernel b is not locally integrable in

σ ∈ S2. To avoid this, H. Grad gave the integrable assumption on the collision kernel bc by a

“cutoff ” near singularity:∫
S2
bc

(
v − v∗
|v − v∗|

· σ
)
dσ = 2π

∫ π
2

0

bc(cos θ) sin θ dθ < ∞. (0.11)

However, the full singularity condition for the collision kernel with non-cutoff assumption is

implicitly defined for the angular collision part b(cos θ), which asymptotically behaves as θ → 0+,

sin θb(cos θ)
∣∣
θ→0+

∼ Kθ−1−ν , ν =
2

s− 1
, 0 < ν < 2 and K > 0, (0.12)

or in “symmetrized” manner,

∃α0 ∈ (0, 2], such that

∫ π
2

0

sinα0

(
θ

2

)
b(cos θ) sin θdθ < ∞, (0.13)

which can handle the strongly singular kernel b in (0.12) with some 0 < ν < 2 and α0 ∈ (ν, 2].

Besides, we further illustrate that the non-cutoff assumption (0.13) can be rewritten as

(1− s)
α0
2 b(s) ∈ L1[0, 1), for α0 ∈ (0, 2], (0.14)

by means of the transformation of variable s = cos θ in the symmetric version of b. As mentioned

in [13, Remark 1], the full non-cutoff assumption (0.13), or equivalently (0.14), is the extension

of the mild non-cutoff assumption of the collision kernel b used in [12], namely,

(1− s)
α0
4 (1 + s)

α0
4 b(s) ∈ L1 (−1, 1) , for α0 ∈ (0, 2]. (0.15)

0.4 The weak formulation and Conservation Law.

To derive the weak formulation, a universal tool (so-called Pre-postcollisional change of vari-

ables) is frequently used, which is an involutive change of variables with unit Jacobian,

(v, v∗, σ) → (v′, v′∗, q̂), (0.16)
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where q̂ is the unit vector along the relative velocity q := v − v∗,

q̂ =
v − v∗
|v − v∗|

. (0.17)

On the other hand, since σ = (v′ − v′∗)/|v′ − v′∗|, the change of variables (0.16) formally

amounts to the change of (v, v∗) and (v′, v′∗). Hence, under suitable integrability conditions on

the measurable function F ,∫
S2

∫
R3

∫
R3

B(|v − v∗|, q̂ · σ)F (v, v∗, v
′, v′∗) dv dv∗ dσ

=

∫
S2

∫
R3

∫
R3

B(|v − v∗|, q̂ · σ)F (v, v∗, v
′, v′∗) dv

′ dv′∗ dσ

=

∫
S2

∫
R3

∫
R3

B(|v − v∗|, q̂ · σ)F (v′, v′∗, v, v∗) dv dv∗ dσ,

(0.18)

where the fact |v′ − v′∗| = |v − v∗|, σ · q̂ = q̂ · σ is used to keep the arguments of collision kernel

B(v − v∗, σ) = B(|v − v∗|, q̂ · σ) unchanged. Note that the change of variables (v, v∗) → (v′, v′∗)

works for a fixed ω but is illegal for any given σ.

With the help of this microreversiblity of velocity from (v, v) to (v′, v′∗), which leaves the

collision kernel B invariant, we can obtain the following weak form for the Boltzmann collision

operator.

Proposition 0.1. For any test function ϕ that is an arbitrarily continuous function of the

velocity v,∫
R3

Q(f, f)ϕ dv =

∫
R3

∫
R3

∫
S2
B(v − v∗, σ)(f

′f ′
∗ − ff∗) dσ dv∗ dv

=

∫
R3

∫
R3

∫
S2
B(v − v∗, σ)ff∗(ϕ

′ − ϕ) dσ dv∗ dv

=
1

2

∫
R3

∫
R3

∫
S2
B(v − v∗, σ)ff∗(ϕ

′ + ϕ′
∗ − ϕ− ϕ∗) dσ dv∗ dv

=
1

4

∫
R3

∫
R3

∫
S2
B(v − v∗, σ)(f

′f ′
∗ − ff∗)(ϕ+ ϕ∗ − ϕ′ − ϕ′

∗) dσ dv∗ dv.

(0.19)

Hence, there is an immediate consequence for a solution f to the Boltzmann equation that,

whenever ϕ satisfies the functional equation,

∀(v, v∗, σ) ∈ R3 × R3 × S2, ϕ(v′) + ϕ(v′∗) = ϕ(v) + ϕ(v∗), (0.20)

then, we at least formally have,

d

dt

∫
R3

f(t, v)ϕ(v) dv = 0 (0.21)

and this kind of ϕ is usually called the collision invariant.

Since the mass, momentum and energy are conserved during the classical elastic collisions, it

is natural to find that the functions 1, vi, 1 ≤ i ≤ 3, and |v|2 and any linear combination of them

are the collision invariants, which can be actually shown as the only collision invariants. Together

with the weak form, this leads to the formal conservation law of the Boltzmann equation,

d

dt

∫
R3

f(t, v)

 0

vi

|v|2

 dv =

∫
R3

Q(f, f)(t, v)

 0

vi

|v|2

 dv = 0, 1 ≤ i ≤ 3. (0.22)
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In particular, at a given time t, one can define the local density ρ, the local macroscopic

velocity u, and the local temperature T , by

ρ =

∫
R3

f(t, v) dv, ρu =

∫
R3

f(t, v)v dv, ρ|u|2 + dρT =

∫
R3

f(t, v)|v|2 dv, (0.23)

then the equilibrium is the Maxwellian distribution,

M(v) = Mf (v) =
1

(2πT )3/2
e−

|v−u|2
2T . (0.24)

0.5 Boltzmann’s H–Theorem and Equilibrium

If not caring about the integrability issues, we select the test function ϕ = log f into the weak

form (0.19), and consider the properties of the logarithm function, to find that

−
∫
R3

Q(f, f) ln f dv =D(f)

=
1

4

∫
R3

∫
R3

∫
S2
B(v − v∗, σ)(f

′f ′
∗ − ff∗) ln

f ′f ′
∗

ff∗
≥ 0

(0.25)

due to the fact that the function (X,Y ) 7−→ (X−Y )(lnX− lnY ) is always non-negative. Thus,

if we introduce Boltzmann’s H–functional,

H(f) =

∫
R3

f ln f dv (0.26)

then the H(f) will evolve in time because of the collisional effect that

d

dt
H(f(t, ·)) = −D(f(t, ·)) ≤ 0, (0.27)

which is the well-known Boltzmann’sH–Theorem: theH–functional, or entropy, is non-increasing

with time evolution.

And the equality holds if and only if ln f is a collision invariant, i.e., f = exp(a+ bv + c|v|2)
with a, b, c being all constants.

0.6 Fourier Transform of the Probability Measures

To give a accurate definition to the space of probability measures, we first define, if Ω = R3

(a locally compact set which is not compact),

C0(R3) :=

{
ϕ(v) ∈ C(R3); lim

|v|→∞
ϕ(v) = 0

}
(0.28)

with

C0(R3) = D(R3)
∥·∥∞

. (0.29)

Then, the space of Radon measures defined as

M(R3) :=
{
µ : C0 7−→ R; µ is linear s.t. ∃C > 0, |µ(ϕ)| ≤ C∥ϕ∥∞, ∀ϕ ∈ D(R3)

}
(0.30)

associated with the measure norm

∥µ∥M(R3) := sup
ϕ∈D(R3),∥ϕ∥∞≤1

|µ(ϕ)| . (0.31)

is a Banach space.
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Remark 0.2. (i) Another way to define the sapce M could be to replace C0(R3) by C(R3
c), where

R3
c is denoted as the compactification of R3 by means of a single point ∞, implying that the limit

value ϕ(∞) exists for any ϕ ∈ C(R3
c). This is a technical issue that we need to have convenient

compactness properties for some subsets of M(R3
c).

(ii) The functionals µ ∈ M(R3) are called (Radon) measures, since there is a one-to-one

correspondence between elements of M(R3) and a class of (Borel) measures µ̃ on R3 with finite

total mass µ̃(R3) < 0, such that

µ(ϕ) =

∫
R3

ϕ dµ̃, ∀ϕ ∈ C0(R3). (0.32)

And, as usual, we do not distinguish between µ and µ̃. Hence, instead of µ(ϕ), we use the

standard duality notation

⟨µ, ϕ⟩ := µ(ϕ) =

∫
R3

ϕdµ, µ ∈ M(R3), ϕ ∈ C0(R3). (0.33)

If µ ∈ M(R3), µ(ϕ) > 0 for all 0 ≤ ϕ ∈ D(R3), we say that µ belongs to a non-negative

bounded Radon measure space M+(R3).

Finally, the space of probability measure is defined as follows:

P (R3) :=
{
µ ∈ M+(R3) with ∥µ∥M(R3) = 1

}
. (0.34)

Proposition 0.3. For µ ∈ P (R3), we define the Fourier transform by

F(µ)(ξ) = µ̂(ξ) :=

∫
R3

e− iv·ξ dµ(v). (0.35)

Then, φ(ξ) = µ̂(ξ) is called the characteristic function and

F : P (R3) 7−→ Cb(R3), (0.36)

where Cb(R3) is the space of bounded continuous functions.

Proof. Consider, for µ ∈ P (R3),

|µ̂(ξ)| ≤
∣∣∣∣∫

R3

e− iv·ξ dµ(v)

∣∣∣∣ ≤ ∫
R3

∣∣e− iv·ξ∣∣ dµ(v) = 1 < ∞, (0.37)

where we observe
∣∣e− iv·ξ

∣∣ ≤ 1 and the continuity of µ̂(ξ) follows from the dominated convergence

theorem.

Proposition 0.4. Let µ ∈ P (R3), then µ is uniquely determined by µ̂.

Proof. We need to show that µ1 = µ2, if µ̂1 = µ̂2. For any ϕ ∈ S, we have∫
R3

ϕ̂(v) dµ(v) =

∫
R3

ϕ(ξ)µ̂(ξ) dξ. (0.38)

Indeed, by the Fubini’s theorem,∫
R3

ϕ̂(v) dµ(v) =

∫
R3

∫
R3

e− iξ·vϕ(ξ) dξ dµ(v) =

∫
R3

∫
R3

e− iξ·v dµ(v)ϕ(ξ) dξ =

∫
R3

µ̂(ξ)ϕ(ξ) dξ

(0.39)
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Furthermore, if µ1(v) = µ2(v), then by (0.38), we find,∫
R3

ϕ̂(v) dµ1(v) =

∫
R3

ϕ̂(v) dµ2(v) (0.40)

for any ϕ ∈ S. Since the Fourier transform in invertible on S, we can also write it as,∫
R3

ϕ̂(v) dµ1(v) =

∫
R3

ϕ̂(v) dµ2(v), ∀ϕ ∈ S. (0.41)

By choosing the mollifier function ϕϵ ∈ S such that

1[a,b] ≤ ϕϵ ≤ 1[a−ϵ,b−ϵ], (0.42)

it follows the dominated convergence theorem

µ1([a, b]) = lim
ϵ→0

∫
R3

ϕϵ dµ1(v) = lim
ϵ→0

∫
R3

ϕϵ dµ2(v) = µ2([a, b]) (0.43)

that µ1 = µ2.

Let µj and µ denote probability measure on R3, we say that µj convergent weakly to µ if

lim
j→∞

∫
R3

ϕdµj =

∫
R3

ϕdµ (0.44)

for all ϕ ∈ C0(R3), which is the weak convergence of measures.

Proposition 0.5. If µj and µ belong to P (R3) and for each ξ ∈ R3,

lim
j→∞

µ̂j(ξ) = µ̂(ξ), (0.45)

then,

lim
j→∞

ϕ(v) dµj(v) =

∫
R3

ϕ(v) dµ(v), (0.46)

for all ϕ ∈ S(R3).

Proof. Since µj ∈ P (R3) is a probability measure with µj(R3) = 1, we have,

sup
j

|µ̂j(ξ)| = sup
j

µj(R3) = 1 ≤ ∞. (0.47)

Then, for ϕ ∈ S, |ϕ(ξ)µ̂j(ξ)| ≤ |ϕ(ξ)|, hence, it follows the dominated convergence theorem that,

lim
j→∞

∫
R3

ϕ(ξ)µ̂j(ξ) dξ =

∫
R3

ϕ(ξ)µ̂(ξ) dξ, (0.48)

which is equivalent to, by Fubini’s theorem,

lim
j→∞

∫
R3

ϕ̂(v) dµj(v) =

∫
R3

ϕ̂(v) dµ(v). (0.49)

Finally, the desired weak convergence of µj to µ follows from the fact that the set of all ϕ̂ such

that ϕ ∈ S is all of S.
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0.7 Fourier Transform of the Collision Operator (Bobylev Identity)

The Fourier transformation has been widely used in the analysis of various kind of partial

differential equations. However, it used to be very painful to find an elegant representation of

the Boltzmann equation in the Fourier space, even though the Boltzmann operator possesses

a nice weak formulation. Thanks to A. V. Bobylev, this problem turned out not as intricate

as one may imagine, at least for the Maxwellian molecules. Since then, the so-called “Bobylev

Identity” has become an extremely powerful technique in the study of the Boltzmann equation,

especially in the case of spatially homogeneous theory.

Proposition 0.6. Consider the Boltzmann collision operator Q(g, f) with its collision kernel B

being the Maxwellian molecule b, i.e., B does not depend on |v − v∗|,

Q(f, f)(v) =

∫
R3

∫
S2
b

(
v − v∗
|v − v∗|

· σ
)
[f(v′)f(v′∗)− f(v)f(v∗)] dσ dv∗. (0.50)

Then, the following formulas hold,

F
[
Q+(g, f)

]
(ξ) =

∫
S2
b

(
ξ

|ξ| · σ

)
ĝ(ξ−)f̂(ξ+) dσ,

F
[
Q−(g, f)

]
(ξ) =

∫
S2
b

(
ξ

|ξ| · σ

)
ĝ(0)f̂(ξ) dσ,

(0.51)

where,

ξ+ =
ξ

2
+

|ξ|
2
σ, ξ− =

ξ

2
− |ξ|

2
σ. (0.52)

Proof. By performing the weak formulation, for any test function ϕ, we have,∫
R3

Q+(g, f)(v)ϕ(v)dv =

∫
R3

∫
R3

∫
S2
b

(
v − v∗
|v − v∗|

· σ
)
g(v∗)f(v)ϕ(v

′) dσ dv∗ dv. (0.53)

Selecting ϕ(v) = e− iv·ξ in the identity above, we have

F
[
Q+(g, f)

]
(ξ)

=

∫
R3

∫
R3

∫
S2
b

(
v − v∗
|v − v∗|

· σ
)
g(v∗)f(v) e

− i( v+v∗
2 +

|v−v∗|
2 σ)·ξ dσ dv∗ dv

=

∫
R3

∫
R3

∫
S2
b

(
v − v∗
|v − v∗|

· σ
)
g(v∗)f(v) e

− i v+v∗
2 ·ξ e− i

|v−v∗|
2 σ·ξ dσ dv∗ dv,

(0.54)

according to the general change of variable,∫
S2
F (k · σ, l · σ) dσ =

∫
S2
F (l · σ, k · σ) dσ, |l| = |k| = 1, (0.55)

due to the existence of an isometry on S2 exchanging l and k, we have, by exchanging the rule

of ξ
|ξ| and

v−v∗
|v−v∗| , ∫

S2
g(v∗)f(v)b

(
v − v∗
|v − v∗|

· σ
)
e− i

|v−v∗|
2 σ·ξ dσ

=

∫
S2
g(v∗)f(v)b

(
ξ

|ξ|
· σ

)
e− i

|ξ|
2 σ·(v−v∗) dσ

(0.56)
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Thus,

F
[
Q+(g, f)

]
(ξ)

=

∫
R3

∫
R3

∫
S2
g(v∗)f(v)b

(
v − v∗
|v − v∗|

· σ
)
e− i v+v∗

2 ·ξ e− i
|v−v∗|

2 σ·ξ dσ dv∗ dv

=

∫
R3

∫
R3

∫
S2
g(v∗)f(v)b

(
ξ

|ξ|
· σ

)
e− i v+v∗

2 ·ξ e− i
|ξ|
2 σ·(v−v∗) dσ dv∗ dv

=

∫
R3

∫
R3

∫
S2
g(v∗)f(v)b

(
ξ

|ξ|
· σ

)
e− iv·( ξ

2+
|ξ|
2 σ) e− iv∗·( ξ

2−
|ξ|
2 σ) dσ dv∗ dv

=

∫
S2
b

(
ξ

|ξ|
· σ

)
f̂(ξ+)ĝ(ξ−) dσ,

(0.57)

where, unlike the elastic case, the ξ+ and ξ− are defined as

ξ+ =
ξ

2
+

|ξ|
2
σ, ξ− =

ξ

2
− |ξ|

2
σ. (0.58)

And the formula for F [Q−(g, f)] (ξ) is then easily obtained by the same kind of but more

simpler computations.

For a given probability measure F : R3 7−→ R or its density function f , we define the

corresponding characteristic function φ(ξ) by the Fourier transform:

φ(ξ) = f̂(ξ) :=

∫
R3

e− iv·ξf(v) dv =

∫
R3

e− iv·ξ dF (v), (0.59)

and its inversion formula by normalization writes

f(v) =

∫
R3

eiv·ξ f̂(ξ) dξ =

∫
R3

eiv·ξφ(ξ) dξ. (0.60)

As a consequence, the spatially homogeneous Boltzmann equation can be converted into the

following equation for the new unknown function φ = φ(t, ξ):

∂tφ(t, ξ) =

∫
S2
b

(
ξ · σ
|ξ|

)[
φ(t, ξ+)φ(t, ξ−)− φ(t, 0)φ(t, ξ)

]
dσ, (0.61)

where the ξ+ and ξ− have the same definition as in (0.58), which also satisfy the following

relations:

ξ+ + ξ− = ξ and |ξ+|2 + |ξ−|2 = |ξ|2, (0.62)

as well as

|ξ+|2 = |ξ|2
1 + ξ

|ξ| · σ
2

and |ξ−|2 = |ξ|2
1− ξ

|ξ| · σ
2

. (0.63)
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